Depth dependent stability estimate in electrical impedance tomography

نویسندگان

  • Sei Nagayasu
  • Gunther Uhlmann
  • Jenn-Nan Wang
چکیده

We study the inverse problem of determining an electrical inclusion from boundary measurements. We derive a stability estimate for the linearized map with explicit formulae on generic constants that shows that the problem becomes more ill-posed as the inclusion is farther from the boundary. We also show that this estimate is optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

New global stability estimates for the Calderón problem in two dimensions

We prove a new global stability estimate for the Gel’fandCalderón inverse problem on a two-dimensional bounded domain. Specifically, the inverse boundary value problem for the equation −∆ψ+v ψ = 0 on D is analysed, where v is a smooth real-valued potential of conductivity type defined on a bounded planar domain D. The main feature of this estimate is that it shows that the more a potential is s...

متن کامل

Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities

We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω ⊂ Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.

متن کامل

Adaptive mesh refinement techniques for electrical impedance tomography.

Adaptive mesh refinement techniques can be applied to increase the efficiency of electrical impedance tomography reconstruction algorithms by reducing computational and storage cost as well as providing problem-dependent solution structures. A self-adaptive refinement algorithm based on an a posteriori error estimate has been developed and its results are shown in comparison with uniform mesh r...

متن کامل

Locating Anisotropies in Electrical Impedance Tomography

In this article, the following electrical impedance tomography problem (EIT) is considered: On the surface of a body with unknown impedance distribution, one applies a set of prescribed electric currents and measures the corresponding voltages on the surface. From this information, one seeks to estimate the internal structure of the body. Potential application areas of the EIT range from medica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008